Author Topic: Ph in all it's glory  (Read 13133 times)

Likesspace

  • Guest
Re: Ph in all it's glory
« Reply #15 on: December 16, 2008, 03:09:22 AM »
Hi guys,
There is no doubt that proper PH is critical to making great cheese. Hitting the marks every step of the way will not only result in a superior final product but will also make it possible to obtain the same product each time you make a certain recipe.
Having said that, I will now say this.....
I have chosen not to use a PH meter up to this point in my cheesemaking.
I have made this choice for a couple of different reasons.
1. I feel that fantastic cheese has been made for centuries without the aid of a PH device. I honestly want to learn to produce great cheese by feel and sight since this is the way it has been done since the beginning.
2. Although I can't say that I am an expert in cheesemaking I do consistenly produce a good and satisfying product. Since I have not used a PH meter I've learned to trust my knowledge of the curd at any given point in the process.
The key to making good cheese without a meter is simply tons of practice.
After making enough of a certain variety you will get a "feel" for how the curd should look and feel (both in the hand and in the mouth). This is my experience anyhow.
One of my favorite cheeses to make is swiss. This is one of the more difficult cheeses to make and I have to admit that I've never made one that is really up to my expectations.
Having said that, I will say that I am getting closer with each batch I make. I am getting a  feel for this curd that tells me when I have a curd that will be nice and elastic after pressing and stand up to the brining and salt wiping phases of the process.
My last two came out of the brine perfectly although I am still having problems with seeing it form large eyes during the sweating stage. Regardless of my problems, I am having a blast experimenting with this cheese and am confident that I will eventually succeed.
I'm sure that I will eventually buy a PH meter so that I can produce an even better product.
As for now, I am having fun with this hobby and seeing what I can accomplish using the time tested techniques.

Just my humble opinion....

Dave

Offline Cartierusm

  • Old Cheese
  • *****
  • Posts: 1,874
  • Cheeses: 21
Re: Ph in all it's glory
« Reply #16 on: December 16, 2008, 03:40:45 AM »
Sweet, thanks for the info and Welcome.

Likesspace

  • Guest
Re: Ph in all it's glory
« Reply #17 on: December 17, 2008, 12:58:53 AM »
Thanks for the welcome. I'm just thrilled that I've found this forum and have access to others who share such a wonderful hobby.
It's tough describing to non-cheese makers what a thrill it is to see a cheese turn out. It's also a blast trying to perfect this craft.
I've been at it three years now and I still get just as much enjoyment out of a successful make as I did the first time. That's pretty amazing in and of itself.
Thanks again for the welcome.
Dave

Cheese Head

  • Guest
Re: Ph in all it's glory
« Reply #18 on: December 17, 2008, 03:44:52 AM »
Likesspace, agree, it's kind of an infectious hobby, and quite an art taking "simple" milk and transforming it into all kinds of different cheeses!

Tea

  • Guest
Re: Ph in all it's glory
« Reply #19 on: December 17, 2008, 08:04:44 PM »
Quinlan thanks for those links, I enjoyed reading your story.  I hope you have continued success with your cheese making.
Hope you can find the time to imput every now and then.

Offline Cartierusm

  • Old Cheese
  • *****
  • Posts: 1,874
  • Cheeses: 21
Re: Ph in all it's glory
« Reply #20 on: December 22, 2008, 09:17:35 PM »
Today I started with pastuerized and homogonized milk as I'm making a test batch to test all my newly made equipment. I started with just good store milk and the PH was 6.8. At time of adding rennet it was 6.7, after cutting the cubes it was 6.6. This is no where near what you said Quinlan of 4.6 at time of cutting the curd. I was making cheddar by the way. Should I be concerned? I also noticed the recipe I am making calls for 45 minutes of ripening with either starter or Direct Set and most recipes I've come across say 1 hour. I also know that when using direct set it can take 1/2 hour before it even starts working effectively. One source on the web Peter Dixon says 1 hour for a starter and 1 1/2 hours for direct set. I think I'll do that next time. Any suggestions?

Milleens

  • Guest
Re: Ph in all it's glory
« Reply #21 on: December 22, 2008, 10:37:23 PM »
I wonder whether the pH difference is due to the source of milk, I'm using raw fresh milk, maybe two or three days old at the most. I collect it from my farmer supplier. I'm guessing that there would be a huge difference between that and allready past. hom. shop milk.
I haven't got a pH meter yet, when I do I can give you more accurate figures. Though I'm confident the ones I quoted earlier were accurate.
I add the starter and then one hour later add the rennet then one hour later cut the curd. However I'm making with over 1000 litres of milk at a time. If I was making with half that I'd leave it only half the time, though I know that scale isn't accurate if your dropping much lower than 500litre's.

Cheese Head

  • Guest
Re: Ph in all it's glory
« Reply #22 on: December 22, 2008, 10:52:52 PM »
Just had a look through some of my recent cheese makings and I'm measuring "fresh" store bought past hom whole milk at 6.3 and at time of cutting the curd I'm just under 6. Cartier and my gauges may be calibrated a little differently accounting for our different readings but we are getting a similar drop and nothing like 4 range.

Offline Cartierusm

  • Old Cheese
  • *****
  • Posts: 1,874
  • Cheeses: 21
Re: Ph in all it's glory
« Reply #23 on: December 22, 2008, 11:02:53 PM »
When I went to drain the curds it says it's 5.8. I'm not too worried. Since I make wine my PH meter is high end and I calibrate it every month with calibration solution. Anyway, I'll see how it goes. I think next time I'll go for 1 1/2 hours.

Quinlan, are you using a mother culture or a Direct Set? Thanks.

Offline Cartierusm

  • Old Cheese
  • *****
  • Posts: 1,874
  • Cheeses: 21
Re: Ph in all it's glory
« Reply #24 on: December 25, 2008, 02:58:12 PM »
Quinlan, does using a PH meter work just as well as doing a titrateable acid test? I have both, for wine making, but doing to titrateable acid is a PITA. My readings are not changing much. For cheddar it went from Store Bought Milk of 6.8 PH to 5.8 PH. For my Parmesan it went from 6.8 to 6.6, but Parmesan doesn't develop that much acid anyway, you only let it ripen 30 minutes.

Wayne, do you have any readings of your old milk and your new farm fresh milk PH readings? PH reading before starting that is?

wharris

  • Guest
Re: Ph in all it's glory
« Reply #25 on: December 27, 2008, 12:05:07 AM »
My pH readings for fresh milk are in 6.1 - 6.3 range.

my question is how do i check the pH (or acid level) of my curds or cheese?

Offline Cartierusm

  • Old Cheese
  • *****
  • Posts: 1,874
  • Cheeses: 21
Re: Ph in all it's glory
« Reply #26 on: December 27, 2008, 01:56:41 AM »
From what I've read in my books you take the PH of the whey, the only time I can't take a reading is on the last 2 pressings, but at that point it doesn't matter.

wharris

  • Guest
Re: Ph in all it's glory
« Reply #27 on: February 09, 2009, 10:49:37 PM »
Some recipes call for the measurement of acidity.  Many times this is in the form of pH.  Sometimes % acidity, sometimes degrees of acidity.

"When the whey is pH 5.3-5.4 (acidity of 55-75 degrees), mill the slabs of curd into pieces 1 inch x 2 inches.": The Peter Dixon Cheddar recipe

I had to  look up what "Degrees of Acidity" was.  Here is the scoop. Basically it is a measurement of acidity of the milk. (not the pH - slight difference).  Most acid tests today use a titration kit to measure titratable acid (TA) as a percentage of the original volume of liquid. The degrees of acidity is different measurement scale of the same thing.
The degree Dornic is a measuring unit of acidity of milk.  1°D corresponds to 0,1g of lactic acid per liter of milk. Naturally the Lactose contained in milk is degraded gradually in Lactic acid by the Bactérie S.
and
Some books may refer to Dornic acid degrees ... This is simply done by moving your column reading one place to the right ... i.e. graduation is 1.6 = 16 Dornic degrees.


I would refer to the links for more information. 

Likesspace

  • Guest
Re: Ph in all it's glory
« Reply #28 on: February 10, 2009, 03:28:13 AM »
Hi guys...
Well I finally broke down and ordered a PH meter. I bought the Hannah model that Wayne suggested....
Anway, now that I have this thing on the way I realized that I have no idea what to do with it so I posted a message on the other board and here's the information I received back.
NOW...
If anyone can tell me what all of this means I will be well on my way to making better cheese.
Here's the post:

Concepts of Acidity and pH

All aqueous systems (including the water in you and in cheese) obey the following relationship (Equation 3) between the concentration of hydrogen ions (H+) and hydroxyl ions (OH-). Note, the square brackets indicate concentration in moles per litre. A mole is 6 x 1023 molecules, that is, the numeral six with 23 zeros after it.

[H+] x [OH-] = 10-14

Because the actual concentrations in moles per litre are small, it is customary to express the values as exponents. For example, if we know that the concentration of hydrogen ions [H+] in a sample of milk is 0.000001 moles/l which is equivalent to 10-6 moles/l, we can calculate the concentration of hydroxyl ions as 10-14/10-6 = 10-8 moles/l which is the same as 0.00000001 moles/l.

  * If [H+] = [OH-] the solution is neutral with respect to acidity.
  * If [H+] > [OH-] the solution is acidic.
  * If [H+] < [OH-] the solution is basic or alkaline.
  * Chemicals which contribute H+ or absorb OH- are acids, while bases contribute OH- or absorb H+.


The concept of pH evolved as a short hand method to express acidity. We have already seen that a hydrogen ion concentration of 0.000001 moles/l can be expressed as [10-6], an expression which defines both the unit of measurement and the numerical value. The concept of pH is a further abbreviation which expresses the concentration of hydrogen ions as the negative log of the hydrogen ion concentration in units of moles/l. This sounds complex but is quite easy to apply. For example, the log10 of hydrogen ion concentration of [10-6] is equal to -6. The final step is to take the negative of the log, that is -1 x -6 which is 6. So, 0.0000001 moles/l = [10-6] = pH 6. From the relationship expressed in Equation 3, if the concentration of one of OH- and H+ is known, it is always possible to calculate the concentration of the other. So, if the pH of a solution is 6, the pOH is 14 - 6 = 8. Because this relationship is understood, the convention is to only report pH. Note, that because the negative sign was dropped by convention, decreasing pH values mean increasing acidity, that is, increasing concentration of H+ ions. So, although both TA and pH are measures of acidity, pH decreases with increasing acidity.

All of this can be summarized by a description of the pH scale. The pH scale for most practical purposes is from 1 to 14, although a pH of less than one is theoretically and practically possible.

pH 7.0 is neutral acidity [H+] = [OH-]

pH < 7.0 = acid condition [H+] > [OH-]

pH > 7.0 = alkaline condition [H+] < [OH-]

pH Versus Titratable Acidity

TA and pH are both measures of acidity but, for most purposes, pH is a better process control tool, because the pH probe measures only those H+ which are free in solution and undissociated with salts or proteins. This is important because it is free H+ which modifies protein functionality and contributes sour taste. It is also the pH rather than titratable acidity which is the best indicator of the preservation and safety effects of acidity. It must be emphasized, that the most important factor available to the cheese maker to control spoilage and pathogenic organisms is pH control. The pH history during and after cheese manufacture is the most important trouble shooting information. Cheese moisture, mineral content, texture and flavour are all influenced directly by the activity of free hydrogen ions (i.e. pH).

Titratable acidity (TA) measures all titratable H+ ions up to the phenolphthalein end point (pH 8.5) and, therefore, varies with changes in milk composition and properties. During cheese manufacture, the pH gives a true indication of acid development during the entire process so that the optimum pH at each step is independent of other variables such as milk protein content. However, the optimum TA at each step in cheese making will vary with initial milk composition and the type of standardization procedure used.

A good practical illustration of the difference between TA and pH is the effect of cutting. Up to the time of cutting, TA of the milk increases with the development of acidity by the culture. After cutting the TA of the whey is much lower. This does not mean that acid development stopped. It simply means that titratable H+ ions associated with the milk proteins are no longer present in the whey. This leads to the concept of buffer capacity, which is an important principle in cheese making. The effect of protein removal on the TA of whey, is related to the ability of protein to ‘buffer’ the milk against changes in pH. That same buffer property is the reason it helps to take acidic medication, like aspirin, with milk.

Buffer capacity can be described as the ability of an aqueous system, such as milk, to resist changes in pH with addition of acids (added H+) or bases (added OH-). Specifically, buffer capacity is the amount of acid or base required to induce a unit change in pH. For example, a small addition of acid to distilled water will cause a large reduction in pH. The same amount of acid would have a small effect on the pH of milk because milk proteins and salts neutralize the acidity.

The two most important buffer components of milk are caseins (buffer maximum near pH 4.6) and phosphate (buffer maxima near pH 7.0). The buffer maximum near pH 5.0 is extremely important to cheese manufacture because the optimum pH for most cheese is in the range of 5.0 - 5.2. As the pH of cheese is reduced towards pH 5.0 by lactic acid fermentation, the buffer capacity is increasing (i.e., each incremental decrease in pH requires more lactic acid). The effect is to give the cheese maker considerable room for variation in the rate and amount of acid production. Without milk’s built in buffers it would be impossible to produce cheese in the optimum pH range.

Another way to illustrate the difference between TA and pH is to consider typical ranges of pH and TA for normal milk. TA is a measure of the total buffer capacity of milk for the pH range between the pH of milk and the phenolphthalein end point (about pH 8.3). The pH of milk at 25C, normally varies within a relatively narrow range of 6.5 to 6.7. The normal range for titratable acidity of herd milks is 0.12 to 0.18% lactic acid In other words, pH is a good indicator of initial milk quality, while the traditional measurement of TA to indicate bacterial growth in milk is less precise.

pH Measurement

The pH of cheese milk, whey and soft cheese can be measured directly. Firm and hard cheese must be fragmented before analysis. Always measure cheese pH in duplicate and use extreme care in handling the electrode. Place the fragmented cheese in a 30 ml vial or small beaker and gently push the electrode into the cheese ... too much haste is likely to break the electrode on the bottom of the beaker. To ensure good contact, press the cheese around the electrode with your fingers. There is no need to rinse the electrode between cheese samples. However, if the electrode is stored in buffer it should be rinsed with distilled water before measuring cheese pH. Always store the electrode in pH 4 buffer or as directed by the manufacturer. Do not rub the electrode. The electrode should be washed with detergent and rinsed with acetone occasionally to remove fat and protein deposits.

Some PH levels that I read from University of Guelph Science notes.

Feta—————-pH is 4.7
Camembert———The pH should be 6.2 - 6.3. to cut curds,turn hoops till pH is 4.6-4.9
Blue Cheese——pH is 4.5 - 4.7 (similar process as Camembert)
Colby—————whey pH 6.2 - 6.3 to cut curds, finishing at 5.3
Gouda—————Whey pH should be 6.4 - 6.45 to cut curds, finishing at pH should be 5.15 -5.25
Cheddar————whey pH 6.2-6.3 discard whey, final process pH is 5.4-5.3
Romano————-pH is 6.1 - 6.2 drain whey,
Swiss Cheese—-pH 6.55 - 6.50, 5.2 - 5.4 when removed from press.

Again, I'm at a total loss here.
If anyone can make heads or tails of this I would love to hear an explanation in basic language.
Remember, I'm from southern Illinois. I need something written in English!

Dave

Offline Cartierusm

  • Old Cheese
  • *****
  • Posts: 1,874
  • Cheeses: 21
Re: Ph in all it's glory
« Reply #29 on: February 10, 2009, 06:29:09 AM »
Crap Dave, I didn't even read the post at least include some pictures for those of us who are reading challenged. It's like cramming for an examine to see who's the first one to reply.